In 2021 and 2022, MinacNed will host pre-events leading up to the international MicroNanoConference 2022. The symposia are live events in The Netherlands, offering an interesting program with speakers from industry and science, with an opportunity for networking.

On November 23, a Micro Nano Symposium will be organised around the 2021 Groeifonds application. The consortium of partners from science and industry responsible for program will celebrate the submission of their application, specifically the focus theme Biomedical production technology under the NXTGen High Tech

From Science to Market: Biomedical Production Technology

Biomedical production technology fails to keep pace with innovations in the biomedical domain. The (academic) knowledge in the Netherlands is at a very high level in the field of Lab-on-Chip, Organ-on-Chip, Artificial Organs and Cell production technology, but is not (properly) converted into products. The main reason for this is that a multidisciplinary chain is required of suppliers of high-quality specific components in both the technological and biological field. Although the required parties are present in the Netherlands, their production equipment and processes are not yet compatible with each other. These major challenges cannot be solved by a few parties, but a large collaboration is needed to be able to design and functionally qualify products from the existing developed building blocks (e.g., sensors, chips, biomaterials) in order to subsequently achieve upscaling and the growing (world) market.

MinacNed, hDMT, MESA+ and Nano4Society organize a pre-event of the international MicroNano Conference 2022 to address this topic and will present steps that are currently being taken to establish an ecosystem with a unique and first-of-its-kind production chain in the Netherlands.

hDMT partner Minacned

Organizers:   hDMT, MinacNed, MESA+, Nano4Society
Date:               23 November 2021, 14.00 – 17.00
Location:      The Gallery,  University of Twente, Enschede
(The Gallery, Hengelosestraat 500, 7521 AN Enschede)

Preliminary program

13.30 – 14.00  Arrival with coffee and tea

14.00 – 14.10 Opening and welcome, Janny van den Eijnden-van Raaij (chair, hDMT) and Albert van den Berg (MESA+)

14.10 – 14.40  Tom van der Horst (TNO), Overview NXTGEN HIGHTECH
14.40 – 15.10  Berend van Meer (hDMT): “A national ecosystem for biomedical production technologies”

15.10 – 15.40  Coffee Break and networking

 15.40 – 16.10  Marko Blom (Micronit, Enschede),  NXTGEN HIGHTECH: perspective from high tech industry: “Challenges and solutions for scaling from fabrication of prototypes to repetitive manufacturing”
16.10 – 16.40  Jasper Boomker (Kidney Foundation) NXTGEN HIGHTECH: perspective from end user: “Closing innovation gaps: the case of the artificial kidney”

16.40 – 17.00  Panel discussion

17:00-17:30 Drinks and networking

Invited keynote speakers include science and industry partners, a government overview of the importance of these partnerships and the point of view from an end user. After these great talks, the inspired attendees can meet and greet in a network setting with drinks to formalize future partnerships. The event is  a live event in Enschede, at the location The Gallery.

You can now register (free of charge) to attend the event for one of the limited seats.

Registration Micro Nano Symposium
From Science to Market: Biomedical Production Technology

Researchers from Eindhoven University of Technology and Radboudumc have interwoven various bone cells into an ‘organoid’ that can independently make new, hard bone tissue. It’s the most complete 3D model of bone formation to date. The 3D model allows for the study of the key biochemical processes in unprecedented detail and could help in cracking the many mysteries surrounding bone formation. Moreover, the lab-grown bone is particularly suitable for testing and designing new treatments for bone diseases such as osteoporosis or osteogenesis imperfecta.

Imagine using stem cells from your bone marrow to grow a new piece of your bone tissue in the lab, after which medical doctors explore how certain drugs affect your bone tissue. In this way, a tailor-made treatment plan could be made for you, and potentially for everyone. Welcome to the world of personalized medicine.

This vision of drug development is no longer science fiction now that researchers from Eindhoven University of Technology and Radboud university medical center have actually realized the first part: growing a lifelike piece of bone tissue from human stem cells. It is the first organoid of bone, a simplified version of the original bone, and the researchers report about it today in the journal Advanced Functional Materials.

Sandra Hofmann: “We show that we can make lifelike bone exclusively with two cell types.” Image: Vincent van den Hoogen


“With this, we present, for the first time, the full picture of early-stage bone formation,” says Sandra Hofmann, associate professor in Bioengineering Bone from TU/e. And this is of great importance, particularly as the process by which bones form is still largely a mystery. Bone is a very complex material in which, on the one hand, countless cells and processes interact and, on the other hand, an ingenious matrix of collagen and mineral is built up to provide material strength. Much is known about the individual components, but a coherent picture has been lacking until now.

Three types of cells play the main role in bone formation: osteoblasts (which build bone tissue), osteoclasts (which take bone away) and osteocytes (which regulate the building and breaking down of bone). “Most studies so far have focused on one of these types of cells, but that is not a good representation of the real tissue,” says Hofmann. “We present here a piece of woven bone (early-stage bone) that developed from stem cells and contains two types of bone cells: osteoblasts and osteocytes. We now see that we can make lifelike bone exclusively with these two cell types.”

A tiny part of the bone organoid, reconstructed with 3D electron microscopy. The colors indicate different cells connected to form the osteocyte network, embedded in the collagen matrix (cyan).


“And perhaps more importantly, our system behaves just like early-stage bone “, says Anat Akiva, assistant professor Cell Biology at Radboudumc. “We show that both types of cells produce the proteins that the cells need for their functionality, and we show with the greatest detail that the matrix actually is the bone matrix we see in real tissue.”

The fact that a simplified representation of the formation of bone at the molecular level is now possible offers unprecedented possibilities, according to the researchers. “A bone consists of 99% collagen and minerals, but there is also another 1% of proteins that are essential for successful bone formation,” explains professor Nico Sommerdijk from Radboudumc. “So what’s the role of these proteins? How do they support bone formation? Never before have we been able to look at the milestones of this process at a molecular level.”

And with that, they immediately have a great starting point from which to investigate the cause of genetic bone diseases such as ‘brittle bone disease’ and their possible treatments. “Remember that the origin of many diseases is at the molecular level – and so is the treatment,” says Akiva. “In fact, we now have a simple system in a reliable environment where we can poke around and see what happens.”


Anat Akiva et al., An Organoid for Woven Bone, Advanced Functional Materials (9 March 2021). DOI:10.1002/adfm.202010524

Source: hDMT Technology news